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A Critique of Elementary Mathematics Instruction: The Case for Evidence-Based, Explicit 
Teaching and Practice 
This paper examines the conflict between prevalent constructivist-based practices in elementary 
education and the robust findings of cognitive and behavioral science. It argues that the failure to 
utilize features such as explicit instruction and incorporate effective memory retention 
strategies—retrieval practice (massed, spaced, cumulative/mixed or interleaved)—is responsible 
for students’ difficulties in developing mathematical skill fluency, including mastering standard 
algorithms, an important foundation of long-term mathematical success in problem solving. 
Furthermore, it critiques current elementary mathematics textbooks, citing specific examples 
inspired by one high-profile curricula, Eureka Math (Great Minds)1, for overemphasizing 
inefficient strategies at the expense of necessary procedural mastery. 
 

The Instructional Disconnect: Constructivism and Textbook Bias 
Many current elementary curricula materials are heavily influenced by “constructivism and 
reform mathematics”, which advocate for “minimally guided instruction” where students are 
expected to discover mathematical principles through complex problem-solving and inquiry. 
While fostering conceptual understanding is vital, both cognitive and behavioral science tell us 
this approach cannot work. Cognitive science tells us that unguided discovery places an 
overwhelming extraneous cognitive load on novice learners, contradicting the fundamental 
limitations of working memory (Kirschner et al., 2006). Behavioral psychology has 
demonstrated in experimental studies that errors during the acquisition stage of learning are 
deadly to discrimination (Touchette & Howard, 1984; Skinner, 2002), the type of learning upon 
which applied performance and understanding are built (Haring & Eaton, 1978). 
 
A significant contributing factor to the lack of fluency (accuracy and speed) is the content and 
structure of modern math textbooks, which prioritize strategy proliferation over procedural 
efficiency. Cognitive science concludes the use of multiple strategies taught all together blocks 
the student’s ability to build an efficient, working schema (Sweller, 1988). It is best to start with 
the standard algorithm. Behavioral psychology demonstrates that multiple strategies interferes 
with discrimination (Stokes & Osnes, 1989). The goals of fluency and computational efficiency 
are often delayed or sidelined by lengthy explorations of non-standard, multi-step methods. 
 
In math education, the notion that conceptual understanding must precede procedural skill 
development ignores or misunderstands the science demonstrating that working on more 
conceptual-focused understanding benefits procedural skill development (e.g., teaching students 
to create equivalent quantities thereby making challenging problems easier to solve) and building 

 
1 Eureka Math, developed by Great Minds, is a widely used program that emphasizes conceptual understanding, 
which is important, but provides less development of procedural knowledge, especially vital in the earliest grades 

https://sugisorensen.substack.com/p/thoughts-on-effective-math-instruction?utm_source=share&utm_medium=android&shareImageVariant=overlay&r=18plrf&triedRedirect=true
https://sugisorensen.substack.com/p/thoughts-on-effective-math-instruction?utm_source=share&utm_medium=android&shareImageVariant=overlay&r=18plrf&triedRedirect=true
https://www.tandfonline.com/doi/abs/10.1207/s15326985ep4102_1
https://www.structural-learning.com/post/cognitive-load-theory-a-teachers-guide
https://psycnet.apa.org/record/1989-15124-001
https://greatminds.org/math/eurekamath
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procedural skill development benefits conceptual understanding (creating equivalent fractions 
with common denominators solidifies the understanding of the identity property of 
multiplication, fractions as a form of division, and division as solving for an unknown factor 
along with many other understandings such as understanding base unit quantities of less than 1). 
The bidirectional relationship between doing and understanding in math is fairly well-established 
in the empirical literature (see Rittle-Johnson, 2017). Importantly, high levels of conceptual 
understanding are likely not achievable in the absence of computational fluency for a given skill. 
 

Examples from Elementary Curricula: Undermining Efficiency 
The following examples, drawn from typical Grades 2 and 3 instructional materials, illustrate the 
focus on slow, multi-step strategies that consume cognitive resources instead of building 
automaticity with standard procedures: 

Grade Level Inefficient Strategy 
(Curriculum Example) 

Cognitive Critique (Why it's 
Problematic) 

Grade 2 
Subtraction 

Arrow Way (or Counting 
On/Back). To solve $570 - 
$110, students are taught to 
break the subtrahend into 
chunks and perform 
multiple jumps ($570 to 470 
to 460). 

This requires multiple steps and holds 
intermediate calculations in working 
memory, leading to high extraneous 
cognitive load. The standard vertical 
algorithm is the single most efficient 
method. The critical understanding is 
finding the missing addend, so 
subtraction needs to be taught as 
finding the difference. 

Grade 2 
Subtraction 

Compensation Strategy. 
To solve $514 - $290, 
students change the 
problem to $524 - $300 by 
adding $10 to both 
numbers. 

This requires an extra step of 
manipulating the numbers and requires 
conceptual reasoning that may be 
beyond students still developing basic 
math fact fluency and in turn distracts 
from the clear, reliable steps of the 
standard algorithm. 

Grade 3 
Multiplication 

Distributive Property with 
Area Models. To solve $12 
times $3, students must 
decompose $12 into $(10 
times 3) + (2 times 3) 
and/or model this with an 
area diagram. 

While this may be seen as key for 
conceptual grounding, using this 
lengthy method for basic facts delays 
the necessary fluency (automaticity) 
and consumes time that should be 
spent on fact memorization and the 
introduction of efficient multi-digit 
procedures. 
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These alternative methods, often treated as new algorithms, delay the introduction and mastery 
of the standard algorithms2, undermining the fact that mathematics is relentlessly hierarchical. 
Students lacking fluency with efficient procedures will struggle to manage the computational 
demands of later coursework (Gersten et al., 2009). Figure 1 is an efficient example using the 
standard algorithm for subtraction. 
 
Figure 1 

 
 
The Math Imperative: Explicit Instruction, Durable Retention, Transfer and 
Generalization 
Learning science mandates two things for successful learning: how information should be taught 
(explicit instruction) and how it must be reviewed for long-term retention (especially retrieval 
practice). The severe limitations of the brain's working memory require that initial instruction be 
explicit—clear, direct, and systematic. 

• Minimizing Cognitive Load: By clearly modeling the expert procedure (schema) 
through explicit instruction, the teacher minimizes the extraneous cognitive load 
associated with unguided discovery. This ensures the student focuses their resources on 
encoding the correct information. 

• Reduced efficiency: Kirschner et al. (2006) affirm that: "Minimally guided instruction is 
less effective and less efficient than instruction that guides students through the learning 
process." 

 
Behavioral science explains the process as first acquisition where the student has to make the 
correct discrimination, and the teacher arranges the task and task presentation to promote correct 
responding with immediate error correction and faded support that is specifically designed to 
minimize the occurrence of errors. Only after the student has acquired the skill should the student 
be provided with fluency-building instruction which emphasizes a high dosage of opportunities 
to respond at the right level of task difficulty (Greenwood, 1991) which does a number of 
things—it increases the students’ experience of reinforcement during instruction which improves 
their active engagement and motivation to respond, and it makes the response fluent which 
produces skill retention and endurance (Binder, 1996). Finally, such instruction increases the 
probability of applied performance and faster learning of more complex related skills (Burns, 
VanDerHeyden, & Jiban, 2006). 
 

 
2 Standard algorithms are sets of steps used to solve math problems, especially addition, subtraction, multiplication, 
or division of multi-digit numbers. Standard algorithms provide efficient methods for students to use throughout 
their grades. For example, multi-digit subtraction involves lining up numbers by place value, starting from the right 
(ones place), and subtracting each column, regrouping (borrowing) from the next column to the left if the top digit is 
smaller than the bottom digit, a process that breaks down a ten or hundred into ten ones or ten tens.  
----- 
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In addition to explicit initial instruction, careful and intentional practice is essential for long term 
retention. To achieve durable fluency, elementary math instruction must incorporate evidence-
based practice and memorization strategies, including retrieval practice (massed for initial 
fluency, spaced for endurance, interleaved for transfer), task interspersal, incremental rehearsal, 
timed practice intervals with delayed corrective feedback and ‘indiscriminable’ contingencies3. 
 

Strategy Description Cognitive Rationale 

Spaced 
Practice 

Distributing practice of a 
concept or skill over 
increasing time intervals (e.g., 
reviewing Topic A after 3 
days, 1 week, and 1 month). 

Prevents rapid forgetting by forcing 
the memory system to work harder to 
recall the information after a gap, 
strengthening the memory trace 
(Dunlosky et al., 2013). 

Interleaved 
Practice 

Mixing different types of 
problems, concepts, or 
algorithms within a single 
practice session (e.g., solving 
division, then fractions, then 
perimeter). 

Develops discrimination (schema 
selection); forces students to identify 
the correct strategy for a given 
problem, which is essential for 
problem-solving competence (Rohrer, 
2015). 

Retrieval 
Practice 

Actively recalling information 
from memory, often via low-
stakes quizzes or self-testing, 
without looking at notes. 

The act of retrieval itself is a 
powerful learning event that 
reinforces the neural pathways, 
making the information easier to 
access in the future (Roediger & 
Karpicke, 2006). 

 

Recommendations: A Call for Evidence-Based Reform 
To align elementary mathematics education with the principles of the Science of Math, systemic 
reform is necessary across curriculum materials design and instructional practice. 

1. Instructional Mandate: Explicit instruction must be the foundational teaching method 
for new concepts and procedures, with an immediate focus on teaching the most efficient 
standard algorithm. Teachers must consistently use modeling, guided practice, and 
immediate corrective feedback (Archer & Hughes, 2011). 

2. Curriculum Restructuring: Textbook publishers must restructure content to reduce 
strategy proliferation and eliminate the unnecessary delay in teaching standard 
algorithms. Curricula must structurally integrate spaced, interleaved, and retrieval 
practice into daily and practice sessions that sample the content in a variety of “slices” 
from just acquired, to recently acquired, to review of previously mastered skills to ensure 

 
3 The purpose of indiscriminable contingencies is to promote generalization and maintenance of learning over time 
by making reinforcement unpredictable. This encourages the student to continue answering questions correctly even 
when a teacher is not present to provide immediate, consistent praise, because they have come to associate the act of 
doing math with the potential for future reinforcement (Freeland, J.T., Noell, G.H., 2002) 

https://www.thescienceofmath.com/
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long-term retention. Instead of explicit instruction, many textbook publisher programs 
advocate for “productive failure” which causes students to develop math phobia.  

3. Prioritization of Fluency: Educators and administrators must acknowledge that fluency 
with facts and efficient procedures is not an optional "old-school" skill, but a cognitive 
prerequisite that frees up working memory for complex problem-solving and conceptual 
reasoning in later grades. Rather than being at odds with creative, flexible, adaptable skill 
sets, fluency is the birthplace of applied performance (Johnson & Layng, 1992). 

 

By shifting away from pedagogies that prioritize unguided exploration at the expense of 
cognitive efficiency, and by embedding memory science into instructional design, elementary 
education can ensure students acquire the robust and durable mathematical foundations 
necessary for academic success. 
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